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I 
Minimum Mass Structures

with Specified Natural Frequencies1’2

by

A. Miele

I
I 

Abstract. The problem of the axial vibration of a cantilever

beam is investigated numerically. The mass distribution that

I minimizes the total mass for a given fundamental frequency

constraint is determined using both the sequential ordinary

gradient—restoration algorithm (SOGRA) and an ad hoc modif i—

cation of the modified quasilinearization algorithm (MQA).

Key Words. Structural optimization , cantilever beams , axial

vibrations, fundamental frequency constraint, numerical me—

thods, sequential ordinary gradient-restoration algorithm,

modified quasilinerization algorithm .
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Notation

E Modulus of elasticity , lb f t 2

I Normalized mass of the beam, I=M~/M /
L Length of the beam, ft

m Normalized mass per unit length, m=ML/M0
M Mass per unit length, lb ft 2 sec 2

Tip mass , lb f t~~ sec 2

Total mass of the beam, lb f t~~ see2

x Normalized axial coordiante, x=X/L

X Axial coordinate, ft

u Normalized axial displacement, u=Y(X)/Y(L)

Y Axial displacement , f t

8 Frequency Iarameter , 8= w L/ ( p/ E )

p Density, lb f t 4 sec2

w Natural frequency, sec~~

Superscript

Derivative with respect to the normalized axial
coordinate x (for example, u ’ = du/dx)

ACCES ION for
NTIS WaIts $scthui V
DDC tuft~~~~~ 0WWc4OHNCTD 0
JUSTIFICJ~T1O~ -

~~i~~~iDist A:~~~~ ~r4 of SPaCIAL

_ _
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1. Introduction

In this report, we consider the numerical determination

of minimum mass structures with specified natural frequencies.

Specifically, we investigate the problem of the axial vibration

of a cantilever beam: we determine the mass distribution that

minimizes the total mass for a given fundamental frequency

constraint.

The above problem has been investigated analytically by

Turner (Ref. 1) within the frame of the following formulation:

minimize the integral

1 = 1  mdx , (1)J o

with respect to the functions u(x) and m(x) which satisfy the

differential equation

(mu’)’ + 8 2mu= 0 (2)

and the boundary conditions4

u(0) = 0 , (3)

u(l) = 1 , m(l)u’ (1) = 8
2 

. (4)

In the above equations, m is the mass per unit length, u is

the axial displacement, 8 is the frequency parameter, and I

is the total mass of the rod. The prime denotes derivative

4Equation (4—1) is a normalization condition for the displace-
ment function u (x).

I
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with respect to the axial coordinate x.

Turner (Ref. 1) proved that the above problem admits the

following analytical solution:

u=sinh (Bx) /sinh(8), (5)

m=8sinh(8)cosh(6)/cosh 2(8x) , (6 )

with the implication that the minimum value of the total mass

of the rod is

I 
I=sinh2(8) . (7)

I

1

I

I
I

I
I
I
_ _  _ _ _ _ _ _ _ _ _
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I
2. Optimal Control Formulation

Prior to investigating numerically the above problem , we

reformulate it by using the terminology of optimal control

theory.

First Formulation. We introduce the following variables:

t=x, x1=u , x2 =u ’, w=u ” , x3 =m , (8)

and rewrite problem (l)—(4) as follows: minimize the integral

i= J x3dt . (9)

I with respect to the functions x1(t) , x2(t), x3(t), w(t) which

satisfy the differential constraints

I
x1= x 2 ,  (10)

c2 =w , (11)

= -(w + 8 2x1)x 3/x2 , (12)

I and the boundary conditions

x1(0)=0 , (13)

x1(l) =1 , x
2
(1)x3(l) =8

2 . (14)

In the above equations, x1 (t), x2 (t), x3 (t) denote the state

variables and w(t) denotes the control variable.

I
I
I 

_________ 
_ _ _ _ _ _— - -  ___________________ _ _ _ _ _ _ _ _ _ _ _ _ _
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Second Formulation. Upon introducing the auxiliary

state variable x4(t) defined by

x4 =x 2x3 (15)

and upon eliminating x3 (t), we see that the previous problem

can be reformulated as follows: minimize the integral

1= (x 4/x2)dt , (16)

with respect to the functions x1(t), x2(t), x4(t), w(t) which

satisfy the differential constraints

(17)

(18)

= 82x1x4/x2 , (19)

and the boundary conditions

x1(0) = 0 , (20)

x1(1) = 1 , x4 (1) = 8
2 

. (21)

Once a solution x1(t), x2(t), x4(t), w(t) is obtained , the elimi—

nated state variable x3 (t) can be computed from

x~~= x 4/x2 . (22)

I
I
I
_ _ _ _ _ _  _ _ _ _ _  _ _ _  _ _ _ _ _ _ _-—
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Redundant Constraints. Problem (16)-(21)is singular,

in that the control w(t) appears linearly. Ordinarily, mean-

ingful solutions can only be obtained by imposing some appro-

priate bound on the state and/or the control, for instance ,

a bound of the form

0<w(t)<k . (23)

If a bound of type (23) is imposed, then the optimal solution

is generally composed of subarcs of the following kind:

(i) w= 0 , (24—1)

(ii) ~~~ 0 , (24—2)

(iii) w=k , (24— 3 )

where H denotes the Hamiltonian function

H=x 4/x2 — X 1x2 — X 2w +X 48
2x1x4/x2 . (25)

Since

(26)

we see that Eqs. (24) can be rewritten as

(i) w=0 , (27—1 )

~~~ X2 = 0 , (27—2)

(iii) w = k  . (27—3)
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For the particular problem under consideration, certain

simplifying circumstances exist. Owing to the fact that

x2(0) = free , x2(1) = free , (28)

the natural boundary conditions arising from the transversality

condition require that

A 2(0) = 0 , X 2(1) = 0 . (29)

Since these boundary conditions are consistent with (27-2), it

is natural to postulate that the extrenial arc includes a

single subarc (ii), along which

A 2 (t) = 0 , 0< t < 1 . (30)

The result represented by (30) has two implications.

First, the two—sided inequality (23) is redundant, provided k

is sufficiently large. Second , the differential constraint

(18) is also redundant. If one disregards (18), then

the variable x2(t) appears in nonderivated form only; hence ,

x2(t) becomes the control variable v(t) of the following

simplified formulation.

Third Formulation. Upon disregarding (18) and (23), and

upon setting

(31)
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9

we obtain the following optimal control problem: minimize the

integral

I
1= 

~ 
(x4/v)dt , (32)

I J o

with respect to the functions x1(t), x4
(t), v(t) which satisfy

I the dif ferential constraints

(33)

f = —8
2x1x4/v , (34)

and the boundary conditions

x1(0) 
= 0 , (35)

x1 (1) = 1 , x
4 
(1) = 82 . (36)

Once a solution x1(t), x4(t), v(t) is obtained , the elim-

inated variables x2(t) and x3(t) can be computed from

x2 =v , (37)

x3 =x4/v. (38)

This formulation differs from the previous two formulations

for two reasons: (i) it involves two differential constraints ,

rather than three; and (ii) the resulting optimal control

problem is nonsingular (Ref s. 2-3).

I
I
I
_ _ _ _  - _ _ _ _ _ _ _ _ _ _ _  __ _ _ _
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3. Analytical Solution

It can be readily verif ied that the prev ious optimal

co~.trol problem has the following analytical solution :

x1= sinh(8t)/sinh(8) , (39 1)

= 8
2cosh(8)/cosh(8t) , (39 2)

~‘= 8cosh(8t)/sinh(8) , (39—3)

so that

x2 = 8cosh(8t)/sinh(8) , (40—1)

x3 = 8sinh(8)cosh(8)/cosh2(8t) , (40—2)

and

I=sinh2(B) . (41)
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4. Numerical Solutions

Problem (32)-(36) was solved numerically at Rice Univer-

sity, Houston , Texas , using both the sequential ordinary

gradient-restoration algorithm (SOGRA , Ref. 4) and an ad hoc

variation of the modified quasilinearization algorithm (MQA,

Ref. 5). Both algorithms were programmed in FORTRAN IV.

Computations were performed using an IBM 370/155 computer and

double precision arithmetic . The interval of integration was

divided into 100 steps. The differential systems were inte-

grated using Hamming’s modified predictor-corrector method with

a special Runge—Kutta procedure to start the integration routine.

Definite integrals (such as I, P, Q) were computed using a

modified Simpson’s rule. Here, I denotes the functional being

minimized, P is the cumulative constraint error, and Q is the

cumulative error in the optimality conditions. For the defini-

tion of P and Q, see Ref s. 4 and 5.

Experimental Conditions, SOGRA. The following nominal

funtions were employed in order to start the sequential

gradient-restoration algorithm:

x1 (t) = t , (42—1 )

x4(t) = 8
2exp[82(l—t2)/2] , (42—2)

v(t) =1. (42—3)

$
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These nominal functions are consistent with the constraints

(33)—(36). Three values of the frequency parameter were em-

ployed, namely,

8 = i r / 4 , 8 = i r / 2 , 8 = 7 r . (43)

The sequential ordinary gradient-restoration algorithm

was programmed to stop whenever a solution consistent with the

following inequalities was obtained:5

P<E—08 , Q<E— 03 . (44)

Convergence was achieved in N=2 iterations for 8=ir/4 , N=9

iterations for 8=ir/2 , and N= 29 iterations for 8=~
Experimental Conditions, MQA. The converged solutions

generated with SOGRA were employed as the nominal functions for

the modified quasilinearization algorithm. The modified quasi-

linearization algorithm was programmed to stop whenever a

solution consistent with the following inequalities was obtained:

P < E—12 , Q < E—12 . (45)

+ bThe symbol E±ab stands for 10_ a

I
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Convergence was achieved in N l  iteration for 8=ir/4 , N=l

iteration for 8 = ir/2 , and N= 4 iterations for 8 =

Numerical Results. Table 1 presents summary results

pertaining to SOGRA at convergence. For each value of the

frequency parameter 8, the table shows the number of iterations

for convergence N, the computed value of the functional I, the

exact value of the functional ‘e ~ the number of correct signi-

ficant digits M (determined by comparing I with ‘e~ ’ 
the con-

straint error P, and the error in the optixnality conditions Q.

Clearly, as far as the minimum mass is concerned , the solutions

obtained are precise to M= 4 significant digits for 8=ir/4 , to

M = 5  significant digits for B=1T /2, and to M= 2 significant

digits for 8 = iT

Table 2 presents summary results pertaining to MQA at

convergence. Clearly, as far as the minimum mass is concerned ,

the solutions obtained are precise to M = 7 significant digits

for all values of the frequency parameter 8.

Tables 3-5 present the converged solutions x1(t), x2(t),

x3(t), x4(t), v(t) obtained with SOGRA, and Tables 6—8 present

the converged solutions obtained with MQA. The latter solu-

tions agree with the analytical solutions (39)—(40) to at least

4 significant digits at each time station t.

I
I
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5. Discussion and Conclusions

In this report, we have investigated numerically the

problem of the axial vibration of a cantilever beam. We have

determined the mass distribution that minimizes the total mass

for a given fundamental frequency constraint. The original

problem is difficult because of its singular character (see

first and second formulations). However, the transformed

problem is nonsingular (one of the differential constraints is

redundant, see third formulation).

We solved the above problem employing both the sequential

ordinary gradient-restoration algorithm (Ref. 4) and the modi-

fied quasilinearization algorithm (Ref. 5). Using SOGRA , we

determined a preliminary solution relatively close to the op-

timum solution. Then, this preliminary solution was employed

in conjunction with MQA in order to determine a more precise

approximation to the optimum solution .

Concerning the minimum value of the functional I , the

SOGRA solutions are precise to M=4 significant digits for

8=ir/4 , M = 5  significant digits for B=ir/2 , and M = 2  signifi-

cant digits for ~ = i~~. On the other hand , the MQA solutions are

precise to M=7 significant digits for all values of the fre-

quency parameter 8.
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I Table 1. Summary results, SOGRA.

I
8 N I 1e M P Q

1 •
ii74 2 0.7545936E+0O 0.7545892E+00 4 0.21E—32 0.l5E—04

ii/2 9 0.5295951E+Ol 0.5295977E+01 5 0.99E—08 0.88E—03

it 29 0.1346253E+03 0.1333734E+03 2 0.60E—33 0.97E—03

Table 2. Summary results, MQA.

4 8 N I ‘e M P

ii/4 1 0.7545892E+00 0.7545892E+00 7 0.23E—14 0.1OE—30

iij 2 1 0.5295977E+0l 0.5295977E+Ol 7 0.74E—17 0.lOE—30

ri 4 0.1333734E+03 0.1333734E+03 7 0.34E—13 0.lOE—30

I
I
I
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I Table 3. SOGRA solution, 8 ir/4 , N=2, P<E—0 8, Q<E-03

I t x1 x2 x3 x4 v

I
0.0 0.0000E+00 0.9OllE+00 0.9064E+00 0.8l68E+00 0.9OllE+00

0.1 0.902lE—Ol 0.9042E+00 0.9005E+00 0.8l43E+00 0.9042E+00

1 0.2 0.l8lOE+00 0.9l33E+00 0.8833E+00 0.8068E+00

0.3 0.2730E+00 0.9285E+00 0.8558E+00 0.7946E+00 0.9285E+00

0.4 0.3669E+00 0.9496E+O0 O.8194E+00 0.7781E+OO 0.9496E+OO

0.5 0.4632E+00 0.9765E+00 0.7759E+00 0.7577E+00 0.9765E+00

0.6 O.5624E+00 0.1009E+01 0.7273E+00 0.7339E+00 0.1009E+01.

0.7 0.6652E+00 0.1047E+0l 0.6755E+00 0.7074E+00 0.l047E+Ol

0.8 0.7720E+00 0.1090E+Ol 0.6223E+00 0.6787E+00 0.lO9OE+Ol

1 0.9 0.8835E+00 0.ll38E+0l 0.5693E+00 0.6483E+00

$ 1.0 0.l000E+0l 0.ll9lE+0l 0.5l75E+00 0.6168E+00

I
I = 0.7545936E+00

I
I
I

— ~~~~~~~~~~ - —
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Table 4. SOGRA solution, 8=ir/2, N=9 , P<E— 0 8, Q<E—03

t x1 x2 x3 x4 v

0.0 O.0000E+00 0.6828E+00 0.9060E+01 0.6l86E+0l 0.6828E+00

0.1 0.6854E—01 0.6907E+00 0.8847E+01 0.6111E+01 0.6907E+00

0.2 0.1387E+00 0.7153E+00 0.8238E+Ol 0.5893E+0l 0.7153E+00

0.3 0.2122E+00 0.7583E+00 0.7328E+01 0.5557E+Ol 0.7583E+O0

0.4 0.29l0E+00 0.8205E+00 0.6261E+Ol 0.5l37E+Ol 0.8205E+00

0.5 0.3770E+00 0.9025E+00 0.5l73E+Ol 0.4669E+0l 0.9025E+00

0.6 0.4722E+00 0.lOO7E+0l 0.4l54E+Ol 0.4l85E+Oi 0.lOO7E÷Ol

0.7 0.5794E+00 0.ll39E+Ol 0.3254E+Ol 0.3708E+Ol 0.ll39E+Ol

0.8 0.7OllE+00 0.l3OlE+01 0.2504E+Ol 0.3258E+0l 0.l3OlE+Ol

0.9 0.8405E+00 0.l490E+Ol 0.l908E+Ol 0.2844E+Ol 0.1490E+Ol

1.0 0.l000E+Ol 0.l7OlE+0l 0.l449E+01 0.2467E+Ol 0.l7OlE+Oi

I = 0.529595lE+01

I
I
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I
Table 5. SOGRA solution, 8 i t , N 2 9 , P<E—08 , Q<E—03

t x1 x2 x3 x4 v

I
C.0 0.0000E+00 0.2857E+00 0.4264E+03 0.l2l8E+03 0.2857E+00

0.1 0.2899E—Ol 0.3lOOE+00 0.3747E+03 0.ll6lE+03 0.3100E+00

0.2 0.6l36E—01 0.3466E+00 0.2925E+03 0.1014E+03 0.3466E+00

0.3 0.9965E—Ol 0.4254E+00 0.l94lE+03 0.8261E+02 0.4254E+00

0.4 0.1478E+00 0.5471E+00 0.ll75E+03 0.6431E+02 0.5471E+00

0.5 0.2l09E+00 0.7252E+00 0.6715E+02 0.4870E+02 0.7252E+00

0.6 0.2958E+00 0.989lE+00 0.3677E+02 0.3637E+02 0.9891E+00

0.7 0.4118E+00 0.1344E+0l 0.2008E+02 0.2699E+02 0.1344E+01

0.8 0.5663E+00 0.l748E+Ol 0.ll32E+02 0.1979E+02 0.1748E+0l

0.9 0.762lE+00 0.2168E+0l 0.6547E+Ol 0.l4l9E+02 0.2l68E+Ol

1.0 0.l000E+01 0.2588E+Ol 0.38l3E+Ol 0.9869E+0l 0.2588E+Ol

I= 0.l346253E+03

I — —

I
.

I
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I Table 6. MQA solution, 8 it/4, N 1 , P<E—12 , Q<E—12

I
t x1 x2 x3 x4 v

I
I 0.0 0.0000E+00 0.904lE+00 0.9037E+00 0.8170E+00 0.904lE+00

0.1 0.9050E—01 Q.9069E+00 0.8981E+00 0.8145E+00 0.9069E+O0

1 0.2 0.l8l5E+00 0.9l53E+00 0.88l7E+0O 0.8071E+00

1 0.3 0.2737E+00 0.9293E+00 0.8553E+00 0.7949E+00

0.4 0.3676E+00 0.949lE+00 0.8200E+00 0.7783E+00 0.949lE+00

0.5 0.4637E+00 0.9747E+00 0.7775E+00 0.7578E+00 0.9747E+00

0.6 0.5627E+00 0.1006E+0l 0.7293E+00 0.7340E+00 0.1006E+Ol

0.7 0.6652E+00 0.l044E+Ol 0.6774E+00 0.7074E+00 0.1044E+Ol

0.8 0.77lSE+00 0.1088E+Ol 0.6234E+00 0.6786E+00 0.l088E+00

1 
0.9 0.883lE+00 0.ll39E+Ol 0.5688E+00 0.6482E+00

1 1.0 0.1000E+O1 0.ll97E+Ol 0.5150E+00 0.6168E+00

-~~~~- -

I = 0.7545892E+00

I $

II
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Table 7. MQA solution, B ir/2, N 1 , P<E-1 2, Q<E-12

I t x1 x2 
X

3 
X

4 
V

I
I 

0.0 0.0000E+00 0.6825E+00 0.9070E+Ol 0.6l9lE+0l 0.6825E+00

0.1 0.6853E—0l 0.69l0E+00 0.8850E+Ol 0.6ll5E4Ol 0.6910E+00

I 0.2 0.l387E+00 0.7l65E+00 0.8230E+Ol 0.5897E+Ol

0.3 0.2l24E+00 0.7597E+00 0.7320E+Ol 0.5562E+Ol 0.7597E+00

0.4 0.29l3E+00 0.82l7E+00 0.6257E+Ol 0.5142E+0l 0.8217E+0O

0.5 0.3774E+00 0.904lE+00 0.5l69E+Ol 0.4673E+Ol 0.9041E+00

1 0.6 O.4729E+00 0.1008E+Ol 0.4152E+0l 0.4l88E+0l

1 0.7 0.5800E+00 0.ll38E+Ol 0.3260E+0l 0.37llE+01

0.8 0.70l5E+00 0.l296E+Ol 0.25l4E+Ol 0.3260E+Ol 0.l296E+Ol

1 0.9 0.8403E+00 0.l486E+0l 0.1913E+Ol 0.2843E+Ol

1.0 0.l000E+Ol 0.l7l2E+Ol 0.l440E+01 0.2467E+0l 0.l712E+Ol

I
I— 0.5295977E+0l

I
I

II
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Table 8. MQA solution, 8= it, N =4 , P<E—l 2 , Q<E— 12

-~~~-

t xl x2 x3 x4 
v

0.0 0.0000E+00 0.2720E+00 0.4205E+03 0.1144E+03 0.2720E+00

0.1 0.2765E—0l 0.2855E+00 0.3816E+03 0.l089E+03 0.2855E+00

0.2 0.5805E—Ol 0.3275E+0O 0.2901E+03 0.9502E+02 0.3275E+00

0.3 0.9423E—Ol 0.4020E+00 0.l925E+03 0.7740E+02 0.4020E+00

0.4 0.1397E+00 0.5166E+00 0.ll66E+03 0.6024E+02 0.5l66E+00

0.5 0.1992E+00 0.6825E+00 0.6680E+02 0.4559E+02 0.6825E+00

0.6 0.2785E+00 0.9l64E+00 0.3705E+02 0.3395E+02 0.9164E+00

0.7 0.3855E+00 0.l24lE+0l 0.2019E+02 0.2506E+02 0.l24lE+Ol

0.8 0.5309E+00 0.l690E+Ol 0.1089E+02 0.l84lE+02 0.l690E+Ol

0.9 0.7292E+00 0.2306E+0l 0.5847E+0l 0.l349E+02 0.2306E+Ol
(

1.0 0.l000E+Ol 0.3153E+Ol 0.3l29E+Ol 0.9869E+0l 0.3153E+Ol

I = 0.l333734E+03

I
I .
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